Modern methods in protein research The Integrative Structural Biology part

Josef Chmelík

March 2020

Integrative Structural Biology

- combines data from multiple experimental techniques (X-ray, NMR, FRET, MS3D, CryoEM, ...)
 - \rightarrow model for the biological system of interest at atomic resolution
- Biomolecular Complexes inaccessible by traditional methods like X-ray or NMR (or CryoEM)

Outline

- 1. Nuclear Magnetic Resonance
- 2. Small Angle X-ray Scattering
- 3. Förster Resonance Energy Transfer
- 4. Cryo Electron Microscopy

Nuclear Magnetic Resonance

History

The Nobel Prize in Chemistry:

1991: *Richard Ernst* – pulse NMR, FT tranformation

2002: *Kurt Wüthrich* – NMR methods for 3D structure determination in solution

....

proteinase inhibitor IIA (1985)

Nuclear Magnetic Resonance

- Observe changes of local magnetic fields around atom nuclei
- Nuclear spin \neq 0 (for biomolecules spin= $\frac{1}{2}$)
 - → magnetic moment

$$\vec{B}_{0} = 0$$

Random orientation: Net magnetization: $M_0 = 0$

$$\vec{B}_0 \neq 0$$

"preferred" orientation: Net magnetization: $M_0 \neq 0$

$$\vec{B}_0$$

$$M_{_0} \approx \gamma^2 h^2 N_{_s} B_{_0} / 4 kT$$

 $\boldsymbol{\gamma}$ - gyromagnetic ratio

- h Planck's constant
- N_s number of spins
- B₀ magnetic field strength
- K Boltzmann constant
- T absolute temperature

Magnetic moment precession movement

Larmor (resonance) frequency $\omega_0 = -\gamma B_0$

Nucleus	Spin	natural abundance [%]	γ [10 ⁷ rad T⁻¹s⁻¹]	NMR frequency [MHz] (11,74 T)	Relative sensitivity [%]
¹Н	1/2	99,99	26,75	500,0	100
² H	1	0,01	4,11	76,8	0,0001
³ Н	1/2	0	28,54	533,3	0
¹² C	0	98,93	0	0	0
¹³ C	1/2	1,07	6,73	125,7	0,02
¹⁴ N	1	99,63	1,93	36,1	0,1
¹⁵ N	1/2	0,37	-2,71	50,7	0,0004
¹⁶ O	0	99,96	0	0	0
¹⁹ F	1/2	100	25,18	470,4	83
³¹ P	1/2	100	10,84	202,4	6,6

Safe zone for pacemaker

Same nuclei same resonance frequency? NO!

Change of "effective" magnetic field by surrounding electrons

$$B=B_0-B'=B_0(1-\sigma)$$

Change of resonance (Larmor) frequency

$$\delta = 10^6 \frac{\omega - \omega_{ref}}{\omega_0}$$

Chemical shift

"units" ppm (parts per million)

Same chemical shift at different B₀

NMR spectrometer

Sample in NMR tube

1D experiment

2D experiment

Preparation and Mixing do not change during experiment.

Jean Jeener, AMPERE Summer School in Basko Polje, Yugoslavia, September 1971

2D experiment

What can we do with NMR:

- 3D structure determination
- Protein ligand interaction (small molecule, DNA/RNA, protein, atom) – even very weak interactions (K_d in mM)
- Monitoring of biochemical processes
- Dynamics (ps \rightarrow days)
- intrinsically disordered proteins(IDPs)
- "In-cell" NMR

Limitations:

- Protein size
 - < 10 kDa similar to small molecules (COSY, TOCSY, NOESY, …)</p>
 - < 20 kDa 100 % ¹³C and ¹⁵N isotopic enrichment, field \geq 500 MHz
 - up to ~100 kDa 100 % ¹³C, ¹⁵N and ²H isotopic enrichment, field ≥ 800 MHz
 - big proteins changes in structure/dynamics, selective labeling, field ≥ 900 MHz
- Sample volume and concentration
 - ✓ 300 600 μ l, ≥ 0.2 mM, low salt concentration, (deuterated buffer)
- Sample stability
 - ideally weeks (at least ~ 3 days \rightarrow fresh sample preparation)

Limitations:

• Protein size!!!

Procedure

Sample

- Original organism
 - Natural form (posttranslational modification)
 - Small amount, difficult isolation, no isotopic enhancement
- Protein expression in organism (bacteria, yeast, insect or mammalian cells)
 - easy uniform isotopic labeling (15N4Cl, [U-13C] glucose), cheap, high yields, 2H labeling, selective labeling
 - * no posttranslational modification (E. Coli)
- "Cell Free" protein expression
 - Toxic proteins, selective labeling
 - Price, (posttranslational modifications)

NMR spectra acquisition

Fig. 1. The first NMR spectrum of a protein (RNase A; 20% (w/v) in D₂O) published, a single slow scan at 40 MHz [14].

40 MHz CW spectrometer

The first published protein NMR spectrum (1957)

1 GHz NMR spectrometer (23.5 T)

2.0 mM [¹³C,¹⁵N]-Ubiquitin in 90% H₂O/10% D₂O

Protein 1D proton NMR spectrum

2D H—N correlation

Protein "fingerprint"

Folded vs unfolded protein

3D correlation

3D HNCO spectrum

Spectra for 3D structure

- Protein back-bone assignment
 - 1 2D experiment + 2–6 3D spectra
- Side-chain assignment
 - 2 2D + 2–5 3D spectra
- Inter-proton distances
 - · 3 3D spectra

2–3 weeks of NMR time

Intrinsically disordered protein \rightarrow series of 4D, 5D, 6D experiments

Atom resonance frequency assignment

2 complementary experiments

Structural information from NMR

- Inter-proton distances NOE
- Torsion angles scalar interaction constant, chemicals shifts
- Orientation of bonds in space residual dipolar couplings

Inter-proton distances

- Main source of structural information
- Short-range interaction: distances up to 5–6 Å

distance

2D NOESY

2D NOESY

Η

3D NOESY - HSQC

Torsion angles

- Angles φ , Ψ , χ_1 , ω (*cis/trans*)
- Karplus equation
 - J scalar interaction constant depends on torsion angle
 J= A cos² (φ)-B cos(φ)+C
- 4 possible solutions
- Difficult to measure

Can be predicted from the back-bone chemical shifts

Torsion angle

Residual dipolar interaction

- Direct dipol—dipol interaction
- Undetectable in isotropic solution \rightarrow averaged to 0

Observable in anisotropic solution

liquid crystals – PEG, pressed PAG, virus particles (Bacteriophage)

- Long-range interaction
- Size of *D* depends on the bond orientation with respect to the external magnetic field
- Orientation of domains, molecules in complexes

Hydrogen bonds

- H/D exchange measurement
- Predicted on 2° structure
- Scalar interaction trough hydrogen
 bond (a) (b)

Structure calculation X-ray vs NMR

X-ray: GPS coordinates

Praha:	50°04'N	14°27'E
Brno:	49°11'N	16°37'E
Ostrava:	49°48′N	18°15'E

NMR: distances, angles, orientation

distacne(Praha-Brno) ~ 200 km angle(Praha-Brno-Ostrava) ~ 100° orientation(Praha-Brno) ~ SE

Molecular dynamics

Calculated structures

- Set of similar structures with minimal E_{potential}
- Not only 1 structure (like in X-ray)
 - → ensemble of structures which fulfill all experimental data
- Experimental data used as interval

(distance ± error)

root-mean-square deviation (RMSD)

$$RMSD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} distance (C^{\alpha})^{2}}$$

Protein—ligand interaction

Δδ (ppm)

- protein—protein, protein—nucleic acid, protein—small molecule, oligomeration
 - · Identification of binding/interaction site
 - Determination of dissociation constant
- Titration experiment:
 - Small additions of ligand
 - Chemical shifts are very sensitive
 - \rightarrow changes in NMR spectra
 - Dissociation constant
 - Experimental data for docking

 \rightarrow experimental data for docking calculations

Joseph A. Marsh (ed.), Protein Complex Assembly: Methods and Protocols, Methods in Molecular Biology, vol. 1764

Slow exchange = strong interaction

Fast exchange = weak interaction

Solid-state NMR (Magic Angle Spinning NMR)

 θ

Sample:

- Microcrystalline form
- Selective labeling

Applications:

- Membrane proteins
- Insoluble proteins (prions,...)

Anisotropic interactions = $3 \cos^2 \theta - 1 = 0$

 θ_{M} =54.74°

amyloid fibril

2002 – SH3 domain of α-spectrin 1. ssNMR structure

NMR vs X-ray

	NMR	X-ray
sample	Liquid (solid) 😅	Crystal 😟
Isotopic labeling		
Structure quality (resolution, correctness)		Ċ
Protein size		Ċ
Unstructured proteins	÷	
Dynamics	$\overline{\mathbf{e}}$	
Time consumption		

Structures in PDB

Small-Angle X-ray Scattering

• Scattering of monochromatic X-ray beam in protein *solution* \rightarrow overall shape of molecule

- 1D curve \rightarrow 3D shape \rightarrow more than 1 solution
- Validation scattering curve can be easily backcalculated from protein 3D structure
- Applications:
 - Complex formation
 - Additional method for molecular modeling
- Variants:
 - Wide Angle X-ray Scattering (WAXS)
 - Small Angle Neutron Scattering (SANS)

FRET

Förster resonance energy transfer

FRET

- (Fluorescence resonance energy transfer)
- Energy transfer between two chromophores through nonradiative dipole—dipole interaction

- *E* FRET efficiency (quantum yield of the energytransfer transition)
- r_{DA} donor—acceptor distance

Distances 10–100 Å

E depends on:

- distance (r_{AD}) between the donor and the acceptor
- spectral overlap of the donor emission spectrum and the acceptor absorption spectrum
- relative orientation of the donor emission dipole moment and the acceptor absorption dipole moment

- Application:
 - Protein conformation (intra-domain distances)
 - Complex formation/breakup

Cryo Electron Microscopy

CryoEM

- Transmission electron microscopy
- Sample is frozen in amorphous ice
- Cryo-electron tomography
 - \rightarrow 3D reconstructuion
- 2017 Nobel prize in Chemistry

Sample preparation

Vitrification

3D reconstruction

Data acquisition

Boxing

3D image reconstruction from different projections

Averaging → increasing S/N

Application

structure of high molecular weight complexes

GroEL

rotavirus

Ribosome CryoEM structure

2006: 7.3 Å

2008: 6.7 Å

2010: 5.5 Å

^{2014: 3.2} Å

2016: 2.5 Å (60S) a 3.9 Å (40S)

CryoEM facility in CEITEC