Modern methods in protein research

Protein foot-printing and chemical cross-linking

Modern methods in protein research | **Department of Biochemistry** | Charles University

Structural Mass Spectrometry...

- Protein covalent labeling
- **Chemical cross-linking**
- H/D exchange
- Disulfide bonds mapping
- Native mass spectrometry and Ion mobility
- Fast photochemical oxidation of proteins
- ETD/ECD fragmentation
- Limited proteolysis

Special Issue on Mass Spectrometry in Structural Biology (2015) Protein Science 24, 1173-1332

Mass Spectrometry: Goal in Protein Structure Characterization

- Sensitivity
- Analysis of complex mixtures/high MW protein
- Rapid data acquisition

Assay examining higher structures of biomacromolecules by monitoring solvent accessibility of their regions

Single molecule conformation / Conformational changes
Ligand binding / biomacromolecular interactions

Different techniques

Enzymatic / chemical cleavage
Covalent labeling

Covalent labeling

Hydrogen-deuterium Exchange
Stable covalent labeling - Chemical or Radical footprinting and cross-linking

Enzymatic cleavage - Limited proteolysis

Information about the surface accessible area

Several available proteases

Native conditions

Limited proteolysis – identification of fragments ("Top down")

Limited proteolysis – identification of fragments ("Bottom up")

Limited proteolysis – identification of fragments ("Chip set up")

Protein covalent labeling and chemical cross-linking

Available amino acid sidechains for covalent modification

Carboxy groups - Asp, Glu, C-term, pKa (3.8, 4.3, 2.3) pH≥7 » deprotonation Amino groups - Lys, Arg, His, N-term, pKa (9.4, 12, 6.8, 7.8) 7≥pH » protonation Sulfhydryl groups - Cys . pKa 8.9 pH≥7 » -SH Aromatic groups- Trp (indol), Tyr (hydroxyfenyl, pKa 9.9)

~ 23% of amino acid can be covalently modified Klapper et. al. Biochem. Biophys. Res. Commun. 1977, 78, 1018.

Covalent modification of amino acid side chains

Modification of carboxylic acids (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide

and glycine ethyl ester)

Covalent modification of amino acid side chains

Protein covalent labeling: Lys, Tyr, Arg

Suckau et. al. PNAS 1992, 89, 5630 and Glocker et. al. Bioconj. Chem. 1994, 5, 583

Fiedler et. al. Bioconj. Chem. 1998, 9, 236

Protein covalent labeling: Asp, Glu

Kaur P. et al. mAb 2015

Zhang H. et al. MCP 2011

Hydroxyl Radical Footprinting

Products of water or hydrogen peroxide molecule homolytic bond cleavage

Hydroxyl radicals can be generated by various means:

- Fenton reaction
- Irradiation of water by x-rays or electron beams
- Photolysis of hydrogen peroxide FPOP (fast photochemical oxidation of proteins)
- Other radicals available
 OH,
 I, CF3

The relative reactivity of the amino acid side chains

Cysteine, Methionine, Tryptophan

> Tyr > Phe > His > Leu ~ Ile > Arg ~ Lys ~ Val > Ser ~ Thr ~ Pro > Gln ~ Glu > Asp

> > Alanine, Glycine

- •Reactive species
- •React efficiently with most AA side chains •Form STABLE oxidation products

Takamoto K. et al. Annu Rev Biophys Biomol Struct. 2006, 35, 251-276

Conditions for radical labeling

ELECTRON PULSE RADIOLYSIS:

reproducible 1-100 ns pulses; MeV energy range on linear accelerator

SYNCHROTRON RADIOLYSIS:

X-ray; 3-30 keV @ beam current ~ 250 mA

► LASER H₂O₂ PHOTOLYSIS:

- 1% 0,04% H₂O₂ (mixing by stopped-flow device or just before irradiation); quench and removal of residual peroxide is vital
- Nd:YAG; 2 mJ/pulse @ 266 nm; 3-5 ns pulse; 1-100 shots
- 17 ns KrF excimer laser; 50 mJ/pulse @ 248 nm
- 18 ns KrF excimer laser; 62,5 mJ/pulse @ 248 nm; 16 Hz

Fast photochemical oxidation of proteins

- High reactivity of •OH ⇒ the modifications of more than half of amino acid side-chains, providing a higher coverage

Experimental setup

SAMPLE MIXED AND IRRADIATED IN

- μtubes (sample volume ~ 15 µl) or in
- stopped-flow microfluidic mixing device essential for folding / kinetic studies (capillary flow
 Pulsed

Short pulses with high energy are needed to create sufficient concentration of radicals on very short (sub-microsecond) timescales to avoid conformational changes of protein during labeling.
Possible protein conformational changes occur mostly on a longer than milisecond timescale.

MS Protein footprinting - workflow

Some (recent) publications

PROTEIN-PROTEIN INTERACTION

• Actin – coffilin interaction:

Kamal JK et al. PNAS, 104, 19, 7910-7915 (2007)

• Dimerization interface of galectin-1:

Charvatova O et al. JASMS, 19, 11, 1692-1705 (2008)

Some (recent) publications

PROTEIN STRUCTURE

• Integral membrane protein (BR) structure in its natural lipid environment

Pan Y et al. J Mol Biol, 410, 146-158 (2011)

PROTEIN FOLDING KINETICS

• Time-resolved folding and dimerization changes in Ca-binding protein

Stocks BB et al. J Mol Biol, 409, 669-679 (2011)

Chemical cross-linking: the first 3-D structure

STRUCTURAL BIOLOGY AND CELL SIGNALING

Fibroblast grow factor 2

Top 20 threading models ranked by constraint error

Name	Fold family	% Sequence identity	Threading rank	Constraint error, Å*	of violations†
FGF-2	β-Trefoil	98.6	1	0.0	0
IL-1β	β-Trefoil	12.7	5	0.0	0
Gastrotropin	Lipocalin	7.1	8	2.9	1
Hisactophilin	β-Trefoil	8.6	12	5.5	2
Guanylate kinase	P-loop	12.4	9	7.4	4
NTP pyrophosphohydrolase	NTP pyrophosphohydrolase	9.3	6	14.5	3
Glutathione peroxidase	Thioredoxin	11.1	14	16.6	5
Retinol-binding protein	Lipocalin	9.1	18	17.1	3
Nucleoside diphosphokinase	Ferridoxin-like	8.8	20	18.6	2
Cytochrome c4	Cytochrome c	12.6	11	21.4	5
Aspartate carbamoyltransferase	Ferridoxin-like	9.8	13	22.6	4
D-UTPase	β-Clip	7.8	2	27.5	7
Disulfide bond formation protein	Thioredoxin	8.4	15	28.1	8
ASV integrase	Ribonuclease H-like	7.8	19	28.6	5
Endoglucanase C	Galactose binding	11.6	4	33.8	6
TATA-box-binding protein	TATA-box-binding protein-like	10.3	7	40.0	8
Phospholipase A2	Phospholipase A2	9.5	16	55.4	7
PRD paired domain	3-Helix bundle	12.7	17	143.4	8

Young et. al. PNAS 2000, 97, 5802

Chemical cross-linking: the chemistry behind...

CXMS experiment

Nomenclature of peptide cross-linked fragments

(a) Single modifications

Rhodopsin has open structure/function questions

- What is the conformational change that occurs upon light activation?
- What is the configuration of loops involved in Gi binding (not visible on X-ray)?

Rhodopsin Has Many Potential Cross-links

LCMS analysis of Rhodopsine CNBr digest

Red line corresponds to extracted ion chromatograms of selected cross-linked peptides.

β2 - ³¹⁸VTTLCCGKNPLGDDEASTTVSKTETSQVAPA ³⁴⁸

 α - 50 LGFPINFLTLYVTVQH KKLRTPLNYILLNLAVADLFM86

What's wrong? Too many possibilities....

Can We Resolve the Cross-link at K66/K67?

AND CELL SIGNALING

ECD fragmentation of cross-linked peptides

β2 - ³¹⁸VTTLCCGKNPLGDDEASTTVSKTETSQVAPA ³⁴⁸

α^{-50} LGFPINFLTLYVTVQHKKLRTPLNYILLNLAVADLFM⁸⁶

β1 - 310 NKQFRNCM317

α⁻⁵⁰LGFPINFLTLYVTVQHKKLRTPLNYILLNLAVADLFM⁸⁶

Problem solved!

The Cytoplasmic Face of Rhodopsin

CXMS experiment: Top Down approach

Top down: Cross-linked Ubiquitin with a Series of Cross-linkers

Chemical cross-linking: the identification of cross-link

Cross-Link	DSS	DSG	DST	Constraint (N _e -N _e)
M1 - K6	Yes	Yes	Yes	Distance < 5.8 Å
K6-K11	Yes	Yes	Yes	Distance < 5.8 Å
K48-K63	Yes	Yes	No	5.8 Å < Distance < 7.5 Å

Novak et. al. Eur. J. Mass Spectrom. 2003, 9, 623

Protein covalent labeling: why only few cross-links?

Protein covalent labeling: a reactivity of lysine in an issue

¹MQIFVKTLTG ¹¹KTITLEVEPS ²¹DTIENVKAKI ³¹QDKEGIPPDQ ⁴¹QRLIFAGKQL ⁵¹EDGRTLSDYN ⁶¹IQKESTLHLV ⁷¹LRLRGG

(1M~K6~K48~K63) > K33 > K11 > (K27,K29)

• In agreement with NMR data, which shows.

- K11 interacts with E34; K29 interacts with D21
- Crystal structure indicates K27 H-bonds to D52.
- More reactive lysines don't H-bond (K63) or H-bond to backbone carbonyls (K48, K33).
- K48 and K63 participate in formation of polyubiquitin.
- · Agrees with Cross-linking Results.
 - Cross-links observed only between the most reactive lysines and nearby reactive lysines !!!

Novak et. al. J. Mass Spectrom. 2004, 39, 322

"ZERO-LENGTH" CROSS-LINKING

- No cross-linker used.
- Activate carboxylic acid groups with EDC.
- Activated acid side-chains react with primary amine side-chains (DEO-XK).
- Cross-link formed via new amide linkage.

EDC ACTIVATION CAN ALSO BE USED TO CROSS-LINK ACIDIC SIDE-CHAINS TO EACH OTHER (DEO-DEO)

• Use dihydrazides as the cross-linking reagent.

Chemical cross-linking: an alternative chemistry

Carboxylic group reactive cross-linkers

LABORATORY OF STRUCTURAL BIOLOGY AND CELL SIGNALING

41

Carboxy-Carboxy Cross-linking

Chemical cross-linking: an alternative chemistry

Residue	Cross-linker	Cross-link	Constraint (X-ray constraint)	Туре
M1-K6	DSS	Yes	5.8Å < Distance < 7.5Å (20.0Å)	$N_{\alpha} - N_{\epsilon}$
	DSG	Yes		
	DST	No		
K6-K11	DSS	Yes	Distance < 5.8Å (14.0Å)	$N_{\epsilon} - N_{\epsilon}$
	DSG	Yes		
	DST	Yes		
K48-K63	DSS	Yes	5.8Å < Distance < 7.5Å (19.8Å)	$N_{\epsilon}-N_{\epsilon}$
	DSG	Yes		
	DST	No		
M1-E16	EDC	Yes	Distance < 1.5Å (6.2Å)	N _a -C _b
M1-E18	EDC	Yes	Distance < 1.5Å (4.4Å)	N _a -C _o
K63-E64	EDC	Yes	Distance < 1.5Å (4.8Å)	N _e -C _o
D21-D32	ADH	Yes	5.8Å < Distance < 7.5Å (12.9Å)	C _y -C _y
	SDH	No		
E24-D32	ADH	Yes	5.8Å < Distance < 7.5Å (14.0Å)	C ₀ -C _y
	SDH	No		

TOP DOWN MS3D WORKS WELL FOR:

- Characterizing new cross-linking chemistry on small model proteins (< 20 kDa).
- Small proteins with unknown or partially known structures.
- Reactivity studies.

BOTTOM UP APPROACH WITH DIGEST FOR LARGER PROTEINS

- Localizing cross-links with digests alone is difficult
- Combined bottom up/top down approach
 - -Digest protein with a single protease
 - Analyze the large cross-linked fragments with top down methods

Introduction of isotopically labeled probes

Muller DR. et al. Anal. Chem. 2001

Collins CJ. et al. Bioorg. Med. Chem. Lett. 2003

Introduction of isotopically labeled probes

Simplifies data analysis

Collins CJ. et al. Bioorg. Med. Chem. Lett. 2003

Quantitative chemical cross-linking

Data analysis: STAVROX

Gotze M. et al. JASMS 2012

Novel cross-linker design

- Affinity tag for purification
- Gas phase cleavable linker for easy data analysis

Smart design enables in vivo cross-linking

New generation of cleavable cross-linkers

Kao MQ. et al. Mol. Cell Prot. 2010

DSSBu

Scheme 1. Structure of the Symmetric NHS-BuUrBu-NHS Compound (1) for Chemical Cross-Linking

Scheme 3. Fragmentation Mechanism of Protonated 2 upon CID, Delivering Two Complementary Doublets of 26 u Mass Shifted Product Ions^a

^a Product ions of peptide 1 are 6a and 7a, and product ions of peptide 2 are 6b and 7b.

Scheme 4. Fragmentation Mechanism of a Protonated Type 1 Modified Peptide (3) upon CID, Delivering a Product Ion That Is Modified with BuUr [M + H + BuUr] $^+$ (7) by a CNL of Pyrolidinone (85 u)

Muller A. et al. Anal. Chem. 2011

Data analysis: MEROX

Gotze M. et al. JASMS 2015

Protein-nucleic acid cross-linking

LABORATORY OF STRUCTURAL BIOLOGY AND CELL SIGNALING

Protein - DNA cross-links

Footprinting

Assay examining higher structures of biomacromolecules by monitoring solvent accessibility of their regions

Single molecule conformation / Conformational changes
Ligand binding / biomacromolecular interactions

Different techniques

Enzymatic / chemical cleavageStable covalent labeling

Stable covalent labeling

Chemical footprinting
Radical footprinting (* OH, * I, * CF3)

